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ABSTRACT INTRODUCTION

In this paper, the implementation of Pan and Reif's
Parallel Nested Dissection algorithm on
mesh-connected parallel computers is described.
This is the first known algorithm that allows very
large, sparse linear systems of equations to be
solved efficiently in polylog time using a small
number of processors. We describe how the
processor bound of PND can be matched to the
number of processors available on a given parallel
computer by slowing down the algorithm by
constant factors. Also, for the important class of
problems where G(A) is a grid graph, we detail a
unique memory mapping that reduces the
inter-processor communication requirements of
PND to those that can be executed on
mesh-connected parallel machines. The paper
concludes with a description of an implementation
on the Goodyear Aerospace Massively Parallel
Processor (MPP), located at NASA Goddard Space
Flight Center, for which we give a detailed
discussion of data mappings and performance
issues.

The solution of large, sparse linear systems, Ax=b,
pervades many areas of physics and engineering.
Although parallel algorithms for tackling these
problems have existed for a number of years, they
have usually been impractical to implement because
of unrealistically high time bounds or processor
bounds, or both. In other cases, numerical stability
has been a problem; that is, unless the calculations
were performed in infinite precision they would yield
no solution at all. However, none of the above

problems apply to Pan and Reif's (Ref. 8) parallel
nested dissection (PND) algorithm. This algorithm is
based on computing a special recursive
factorization of A, thus reducing the problem of
inverting a large sparse matrix to that of inverting a
number of much smaller dense matrices. PND has a

considerably smaller processor bound than other
polylog parallel methods for solving sparse linear
systems. Furthermore, for any given parallel
computer with p processors, the algorithm can be
slowed down to give the best known time bound
for this processor bound p.
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If A is an nxn matrix, we define a graph G(A)=(V,E) to
be the undirected graph with vertex set V={1 ..... n}
and edge set E={{i,j}IA i not equal to 0}. Here we
shall confine our attent dn to the application of PND
to sparse, linear systems where G(A) is a
two-dimensional (2-D) grid graph. Such systems
occur very extensively in the solution of partial _
differential equations. However, it should be
emphasised that the algorithm is not restricted to
this class of problems.
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TheMassivelyParallel Processor (MPP) is an SIMD
controlled, fine-grained, 2-D mesh-connected
parallel computer with 16,384 Processing Elements
(PEs) built by Goodyear Aerospace for NASA. This
paper will describe how PND can be implemented
on this computer and other parallel machines with a
similar architecture. The implementation is
particularly challenging because of the SIMD control
structure of these computers. Central to the
implementation is a unique memory mapping that
reduces the communication requirements of PND
to those that can be executed using only mesh
connections. Also, the algorithm has been
implemented on the Connection Machine, built by
Thinking Machines Corporation, whose processors
are connected in a hypercube. This implementation
is described in Ref. 5.

In the next section, we give a more detailed
description of PND, while the final section contains
the implementation method for mesh-connected
parallel computers together with some performance
estimates.

DESCRIPTION OF PND FOR GRID
GRAPHS

The method of parallel nested dissection (PND) and
its proof has been described in detail elsewhere

(Ref. 8). Here, we will give a relatively
self-contained overview of the method. Since it is
far from obvious how PND can be used on the MPP,
the description concentrates on those aspects of
the method that are critical to understanding our
implementation for mesh-connected parallel
computers.

Fundamental to the nested dissection of
undirected graphs is the idea of separators. A
separator is a set of vertices that partitions a graph
into two sub-graphs that are connected only
through the separator. Each of the sub-graphs
must contain no more than 2/3 and no less than 1/3
of the nodes of G(A). For a graph of n vertices, the
size of any separator is bound by a function s(n). In
the case of planar graphs s(n) is O(nl/Z). An
undirected graph is said to have an s(n)-separator
family if the class of all its sub-graphs has an
s(n)-separator family. Binary trees, for instance,
have a 1-separator family while a d-dimensional Qrid
of uniform size in each dimension has n1-(1"/d)

-separators.
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The removal of separators from a graph, G(A), and
its resultant sub-graphs, is in fact analogous to
eliminating the unknowns of the associated linear
system, in the order given by the numbering of the
vertices in the separators. Sequential methods for
solving sparse, linear systems have long made use
of nested dissection (Ref. 3) to reduce the problem
to that of inverting dense matrices of size at most
s(n)xs(n). PND is the first algorithm for efficiently
solving sparse, positive definite linear systems,
Ax=b, on parallel c_)mputers that only requires
polylog time and s(n) '_ processors. Moreover, the
algorithm is numerically stable. PND constructs in
0(Iogn) stages a special recursive factorization of A.

This T factorization is distinct from the
LDL'-factorization used in sequential dissection.
Another important difference between sequential
dissection and PND is that the latter requires the
elimination of many, rather than one, separators at
each step of the algorithm.

Suppose G(A) has a separator that decomposes the
graph into two sub-graphs. Furthermore, suppose
that these sub-graphs can be partitioned recursively
through the use of separators. In this way we can
construct a separator tree (see figure 1) whose root
is the separator of G(A). This root has two children
that are the separators of the two sub-graphs. Each
of these children is in turn the parent of two new
children and so on. The leaves of the separator tree
are singleton node sets of remaining sub-graphs.

One of the general difficulties of PND is to compute
efficiently in parallel s(n)-separators. Fortunately, for
the practically important case of grid graphs, which
we are concerned with here, there is a simple way to
do this in O(Iogn) steps. At the completion of these
steps the vertices of the graph have been
renumbered from 1 to n using the separator tree as
a guide. PND requires that A is permuted to reflect
this renumbering. Assuming this has been done,
Pan and Reif (Ref. 8) define a recursive
s(n)-factorization by a sequence of matrices A0,

A 1,..., Ad where,
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Fi0ure 1 - Separator tree for a 3x3 grid graoh

A0-- PAPT ; P is a permutation matrix

Ah=
h YhTi (1)
h Zh

Zh-- Ah+ 1 + YhXh'IYhT; h=0,1 .....d-1

There are several important points to note about

equation (1). Let d be O(Iogn). Also, let Nh be the
number of separators at level h and nh k (k= 1...N h,
nh k<=(2/3)h) the maximum size of an'y separator at
th_ hth level. It can then be seen that Xh is a

block-diagonal matrix consisting of Nh s_uare
blocks of sizes at most nh kXnh k- Thus, Xh'" can
be computed by inverting th_se small diagonal
blocks separatelyL It also follows that the matrix
product YhXh -1Yh T can be decomposed into O(Nh)
triplets of sizes O(n h kXnh k)- Pan and Reif (Ref. 8)
prove that both of the a_ove operations can be
performed in O(Iog2s(n)) time using at most s(n) 3
processors. In fact, the main advantage of the
recursive s(n)-factorization is that it only requires
O(Iogn) stages. This implies that the entire
s(n)-factoriz_tion of A can be computed
inO(Iogn(Iog_s(n)) time using s(n) 3 processors.
However, on even the most parallel of currently
available computers such as the MPP and the
Connection Machine, this bound will severely
restrict the size of problems that can be solved.
Fortunately, the PND algorithm can easily be slowed
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downso that the numberof processorsrequired
matchesthat of a spe._ificparallelmachine. In
particular, if s(n)=n1/>' then nprocessors is
sufficientDrovided the algorithm's speed is reduced
by an nl/2factor. As a matter of fact, a careful time
analysis shows that the total time to complete the
s(n)-recursive factorization of A in this case is
o(nl/2). As we shall see in the next section this

allows very large sparse matrices to be inverted on
the MPP.

Finally, the recursive s(n)-factorization allows us to
write

Ah=

/ Xh'lYhT-

0 I

-- (2)

and hence

Ai 0IIY i
I _ Ah+ 1 hXh"1

--- (3)

Thus, given an s(n)-factorization of A, it is easy to
recursively compute A"b for any column vector b of
length n. This "backsolving" computation can be
performed in time O(Iognlogs(n)) using
s(n)2processors. It should be noted that here we
do not have to s._w down the parallel computation
when s(n)=n 1/z and the number of available
processors is n.
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In summary, a step in the recursive s(n)-factorization
of A is accomplished by moving one level up in the
separator tree removing the level h separators from
the sub-graphs by eliminating the corresponding
unknowns of Ah 1" This involves O(Nh_ matrix
operations on _n+atrices of size O(n h k =) (see
above). If these operations are performed b)_
systolic algorithms, they require a maximum of s(n)"
processors and take O(s(n)) time. Once the root of
the tree is reached (Nh_=l, h=d-1), the
s(n)-factorization is complete. Two traversals of the
separator tree are then necessary to perform the
"backsolving" because of the recursive nature of
equation (3)'and the total time for these
computations is O(Iognlogs(n)).

IMPLEMENTATION OF PND ON THE MPP

In this section we will discuss an implementation of
PND, for the case where G(A) is a nl/2xn 1/2 grid
graph, for mesh-connected parallel computers, in
general, and for the MPP in,particular.

Representing a Grid Graph as a Set of
Boxes

To be able to fully explain our implementation of
PND on the MPP, we first need to expand on some
of the ideas of the previous section. Consider a
phase h of the recursive factorization where Xh is a
block-diagonal matrix consisting of a total of Nh
blocks x h k (k=l..Nh) of size at most nh kXnh k"
Each of t_ese diagonal blocks can be a_socia.'ted
with a given separator. Thesame applies to the
triplets y_k(Xh k )'l(yh k )T (size O(n h k 2) of
YhXh-]Yh I'. Fuffhermor_, their existence'implies
that Z h can 12ebroken up into N h blocks z h k also of
size O(n h k=). This in turn means that Ai_ can be
considere_ as being made up of Nh smaller matrices
ah k" TEach of these will consist of a xh k, Yh k,
(Yh k)-- and a zh k" The crucial observation,
however, is that the' mh,k'S (m= a, x, y, z) are much
smaller and denser than the big matrices to which
they belong. Thus, a key element of the MPP
implementation of PND is to compute Ah+ 1 as
Nh+ 1 ah+l'S. We will now describe in detail our
implementation of the hth stage of PND where

Ah+ 1 must be computed from Ah.

In figure 2, the grid graph of figure 1 has been
extended so that each vertex is the junction of four
edges, each of unit length. The resultant graph
may be represented as a tiling of 2-D boxes with the
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Figure 2 - 3x3 arid gra_Dh Figure 3 - BOx representation of arid araoh

vertices lying algng_their perimeters ( seLefigure 3 ).
Each box is a 2nx2 n+_ rectangle or a 2nx2 n square
depending on whether h is odd or even,
respectively. Now, in computing the aI k'S (h= 0),
the level zero separators are removed ('vertices 1,
2, 3 and 4 for the grid graph of figure 3 .). This may
be viewed as merging pairs of boxes into single
boxes. All vertices strictly internal to a box will be
eliminated by the s(n)-factorization of A. The box
representation of a unit edge length grid graph can
be used at all levels in the separator tree and its
traversal therefore translates into repeated
box-compositions. A box bh k has
2( nh, k + nh. 1,k + 2) vertices on its perimeter. A
matched pair of level h boxes is defined as two
boxes that have a common separator sh k- The first
vertex on either side of a separator will'be referred

to as contact points denoted by c o and c 1,
respectively.

The arithmetic associated with the box-composition

breaks down as follows: To compute the ah+ lk_
will require Nh dense matrix inversions (or L0'L"

decompositions), 2N h matrix multiplications and Nh
matrix subtractions. These operations will be

performe_ by systolic algorithms using sub-arrays of
O((nh k)") processors ( see below for alternative
non-systolic algorithms for the MPP). Because the

two a h k'S of a pair of boxes are not completely
disjoint 'due to the boxes' common edges it will also
be necessary to merge pairs of ah k'S by adding
together the common edge coefficieSt_ in order to

compute the Zh, k, Yh,k, Xh_.kand Yh,k" needed in

the calculation of ah+ 1 k" This requires another Nh
matrix additions. It should be noted that the final
stage ( h=d-1 ) of the s(n)-factorization of A involves
the inversion of a single matrix of size s(n)xs(n) and
that the time required for this is O(s(n)). Hence, the
cost of the final stage is the dominant element in
the total time for the factorization.

The arithmetic described above will require
inter-processor communications. The patterns of
these, as well as their cost, depend on how A and
its factors are mapped onto the local memories of
the PEs. In the following a unique memory mapping
scheme is described that creates local
communication patterns that are supported by
mesh-connected machines such as the MPP. This
scheme also ensures that data can be sent to the
correct processors using SIMD control so that no
explicit address calculations are required.

Mapping a Box Representation of a Grid
Graph onto the MPP.

Let each box of a box representation of a grid graph
correspond to a (nh k+ nh. 1 k + 2) neighborhood
of processors such that the _oefficients of adjacent
boxes in the graph will be stored in adjacent
neighborhoods of PEs. Within each of these
neighborhoods, data is laid out using the following
nile: The ordering of the coefficients should be that
given by taking the vertices of the perimeter of the
box in a clock-wise direction, starting in the lower left
hand corner, just above the corner vertex. Figure 4
shows the result of using our memory mapping
scheme for the pair of boxes of figure 3 with
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PE : i->

J
North Box

I

(-) o o o o x o

(-) o o o o x o

(-) o o o o o o

(7) 0 0 0 X X 0

(1) 0 0 0 0 0 0

(_) o o o o o

South Box

(-) (1) 7) (8) (5) (-)

(-) o o x o x o

0

X -non-zero
coefficient

(1) 0 X X 0 X 0

(7) 0 X X X 0 0

(8) 0 0 X X X 0

(5) 0 X 0 X X 0

(-) o o o o o o

(m) - vertex number
( - ) - missing vertex

Figure 4 - Example of memory mapping for a pair of
boxes with common edge (1,7) of 3x3
grid graph of Figure 1.
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common edge (1, 7). On a mesh-connected
co m,.puter with p pr^ocessors,
(pl/Zl(n h k+nh+l k+ 2))z boxes can be operated
on in para'llel. The _ctual location of each box within
the processor array must be precomputed for all
levels of the separator tree before the recursive
decomposition of A can start. Our box-compositon
strategy greatly simplifies this problem since it
allows the processor in which each coefficient is to
be stored to be determined based simply on the
connectivity of the graph.

Two additional ideas are essential to the successful
use of the memory mapping scheme described
above. First, it is helpful to think of the boxes as
having an orientation: For even h, the separators
are horizontal and the boxes lie along a north-south
axis while for odd h the separators are vertical so
that the boxes have an east-west orientation.

Second, the merging of a pair of ah k'S ( see above )
is facilitated by dividing the _ertices on the
perimeters of the boxes into sequences that will
contain different vertices depending on the
position of a box in a pair.

Let s h k be a separator at the hth level in the
separa|or tree. Then, for a North (East) box let
sequence a (sqa) be the (2nh. 1 k+nh k+l) first
vertices and sequence b (sqb) 'the c_, si.j. k(in
reversed order) and cO vertices. Also, for a _uth
(west) box let sequence a (sqa) be the nh_1 k first
vertices, sequence b (sqb) the c 0, sh k a_d c 1
vertices and sequence c (sqc) the _emaining
vertices. The steps involved in merging pairs of

ah,k'S can now be described as:

(i) For each north ( east ) box reverse the
coefficients associated with the contact points
about the data for the separators and move c^ data

U

to the processors containing this data for the south
( west ) box

(ii) For each north ( east ) box, reverse the order of
the separator coefficients

(iii) Insert the data for sqa and sqb ( minus the cO
coefficients ) for the north ( east ) box after the data
for the sqa of the south ( west ) box: this

automatically aligns the c I and Sh,k coefficients for
the two boxes

(iv) do matrix addition

The data movements of (i), (ii) and (iii) translate into
shifts through the mesh-connected network. The
important points are that all shift distances are given
by the dimensions of the boxes and that the data for

common edges automatically line up. Having
merged the pairs of ah's, the computation of ah+ 1 k
becomes straightforward since all the required dat',_
is now stored in a local neighborhood of
processors.

"Backsolving" and Performance Issues

PND reduces the problem of inverting (LDL T
decomposition) a large sparse matrix, A, to that of
inverting a number of much smaller dense matrices
by computing a recursive s(n)-factorization of A.
Now, a choice has to be made as to which

algoriTthms should be used for matrix inversion(or
LDL-decomposition) and multiplication on the
MPP. We have implemented both systolic and
non-systolic algorithms for these operations. In the
case of inversion, a comparison was made between
a non-systolic Gauss-Jordan and a systolic Givens
rotation method (Ref. 1) This comparison showed
that although the latter required much less
inter-processor communications than the former,
this was off-set by the MPP's broadcasting facility
and the smaller number of arithmetic operations of
Gauss-Jordan. A similar result was obtained for the
matrix multiplication algorithms.

Finally, let us consider the "backsolving" part of
PND. An inspection of equation (3) shows that in
order to minimize the total amount of arithmetic
required to solve a sparse, linear system using PND,
some of the quantities computed during the
factorization of A should be saved for the
"backsolvjng" calculation. These include
Xh k -lyh kTand Xh k"1" Since each processor of
th_ MPP'has only ll_-bits of local memory, it would
be impossible to store quantities where they are
computed. However, the processors also have
access to 16k-bits of staging memory each. This
gives the MPP an impressive total amount of
storage and makes possible the saving of quantities
described above. The overhead of moving data
between local processor memories and the staging
memory would be less than that incurred if
quantities had to be recomputed during the
"backsolving" stage.

The remaining issue is now how to perform the
sparse multiplication A'lb given our memory
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mapping. Thereare two possibleapproaches-
either to divideb intosegmentsbasedon the
verticesoftheperimetersof aboxor tostorebasa
singleglobaldatastructure. We havechosento
implementthe former strategy. Note that in
principle,thesum-ortreeof theMPPcanbe used
to pipelinethe solutionsto manysparse linear
systems,Ax=b,assumingA is thesamefor all of
them. In particular,wecansolveO(s(n))systems
with distinctvectorsb in total timeO(s(n))using
s(n)2processors.

Withthe implementationof PNDoutlinedin this
section, and given the storage constraints of the
MPP, estimates show that linear systems with up to
16k unknowns can be recursively factorized in
about 40 seconds. The "backsolving" will take
about 1 second. It should be noted that the size of
the problems that can be tackled by our
implementation of PND for mesh-connected parallel
computers is only limited by available machine
memory.
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